Causality
POST 8000 - Foundations of Social Science Research for Public Policy

Steven V. Miller

Department of Political Science

GCLEMSON

V E R S




Goal for Today

Introduce students to causality, and distinguishing causality from association.




The Problem, in Quotes

e “That correlation is not causation is perhaps the first thing that must be said.” -
Barnard, 1982 (p. 387)

e “If statistics cannot relate cause and effect, they add to the rhetoric.” - Smith, 1980
(p. 1000 [stylized by me])




Associational Inference

A set of tools to understand how a response variable corresponds with some attribute.
Tools include:

e Probability distributions (conditional, joint)
e Correlation
e Regression(?)

“Associational inference consists of [estimates, tests, posterior distributions, etc.] about the
associational parameters relating Y and A [from units in U]. In this sense, associational
inference is simply descriptive statistics.” - Holland, 1986 (p. 946)




Probability Distributions

Joint probability, in the event A and B are independent from each other:
p(A, B) = p(A) = p(B)
Conditional probability, in the event that A depends on B having already occurred:

p(A, B)

p(A|B):W




Correlation (via Pearson'’s r)
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...where:

x;, y; = individual observations of x or y, respectively.

T,y = sample means of x and y, respectively.

Sz, Sy = sample standard deviations of x and y, respectively.
n = number of observations in the sample.




Properties of Pearsons r

1. Pearson’s r is symmetrical.
2. Pearson’s ris bound between -1 and 1.
3. Pearson’s r is standardized.




Standardization

__ Deviation from the mean
N Standard unit
The standard unit will vary, contingent on what you want.

e |f you're working with just one random sample, it's the standard deviation.
e |f you're comparing sample means across multiple random samples, it's the standard
error.




Standardization

Larger z values indicate greater difference from the mean.

e When z =0, there is no deviation from the mean (obviously).

Standardization has a lot of cool properties you'll see through the semester.

e For now: it's a way to express a variable’s scale.




Causal Inference

Causal inference owes much to Rubin’s “potential outcomes framework.




The Problem in a Nutshell

An individual (¢) who is offered a treatment (Z; = 1) has two potential outcomes:

e An outcome to be revealed if treated (T; = 1): Y;(T; = 1|Z; = 1)
e An outcome to be revealed if untreated (T; = 0): Y;(T; = 0|Z; = 1)

This is a missing data problem of a kind.

e \We can only observe one.
e No perfect counterfactuals.
e Unicorns don't exist.




The Solution

ForT; = 0 and T; = 1, given both offered treatment (Z; = 1):

Individual Treatment Effect fori = Y;(T; = 1|1Z; = 1) = Yi(T; = 0|Z; = 1)

Think in terms of population averages.
e Per Rubin, there is an important population parameter to estimate.
e Hence why we (and he) referred to it as “effect of the treatment on the treated.”

(i.e. TOT)
e Also: the “average treatment effect” (i.e. ATE)




The Importance of Random Assignment

Random assignment (to treatment/control) helps us with ATE because it's tough to imagine
cases where (Z; = 1and T; = 0).

e Per random assignment: participants assigned to treatment/control must be same on
average in the population (“equal in expectation”).

e ie. E[Y;(T; = 0|Z; = 1)] must be equal to E[Y;(T; = 0|Z; = 0)]
By substitution:
TOT = E[Y{(T; = 1Z; = 1)] — E[Y;(T; = 0[Z; = 0)]
When unbiased, a difference in sample means is sufficient:

SILY YR

ny no

TOT =




Some Other Important Assumptions

Exogeneity (worth reiterating)
Unit homogeneity
Conditional independence
SUTVA



Criteria for Evaluating Causal Arguments

Falsifiability

Internal consistency
Careful selection of DV
Concreteness
“Encompassibility” (sic)
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