Causality

POST 8000 - Foundations of Social Science Research for Public Policy

Steven V. Miller

Department of Political Science

Goal for Today

Introduce students to causality, and distinguishing causality from association.

The Problem, in Quotes

- "That correlation is not causation is perhaps the first thing that must be said." -Barnard, 1982 (p. 387)
- "If statistics cannot relate cause and effect, they add to the rhetoric." Smith, 1980 (p. 1000 [stylized by me])

A set of tools to understand how a response variable corresponds with some attribute. Tools include:

- Probability distributions (conditional, joint)
- Correlation
- Regression(?)

"Associational inference consists of [estimates, tests, posterior distributions, etc.] about the associational parameters relating *Y* and *A* [from units in *U*]. In this sense, associational inference is simply descriptive statistics." - Holland, 1986 (p. 946)

Joint probability, in the event A and B are independent from each other:

$$p(A,B) = p(A) * p(B)$$

Conditional probability, in the event that *A* depends on *B* having already occurred:

$$p(A \mid B) = \frac{p(A, B)}{p(B)}$$

Correlation (via Pearson's r)

$$\Sigma \frac{\left(\frac{x_i - \overline{x}}{s_x}\right) \left(\frac{y_i - \overline{y}}{s_y}\right)}{n - 1}$$

...where:

- x_i , y_i = individual observations of x or y, respectively.
- \overline{x} , \overline{y} = sample means of *x* and *y*, respectively.
- s_x , s_y = sample standard deviations of *x* and *y*, respectively.
- *n* = number of observations in the sample.

Properties of Pearsons r

- 1. Pearson's *r* is symmetrical.
- 2. Pearson's *r* is bound between -1 and 1.
- 3. Pearson's *r* is standardized.

Standardization

 $z = \frac{\text{Deviation from the mean}}{\text{Standard unit}}$

The standard unit will vary, contingent on what you want.

- If you're working with just one random sample, it's the standard deviation.
- If you're comparing sample means across multiple random samples, it's the standard error.

Larger *z* values indicate greater difference from the mean.

• When *z* = 0, there is no deviation from the mean (obviously).

Standardization has a lot of cool properties you'll see through the semester.

• For now: it's a way to express a variable's scale.

Causal Inference

Causal inference owes much to Rubin's "potential outcomes framework.

The Problem in a Nutshell

An individual (i) who is offered a treatment ($Z_i = 1$) has two potential outcomes:

- An outcome to be revealed if treated ($T_i = 1$): $Y_i(T_i = 1 | Z_i = 1)$
- An outcome to be revealed if *un*treated ($T_i = 0$): $Y_i(T_i = 0 | Z_i = 1)$

This is a missing data problem of a kind.

- We can only observe one.
- No perfect counterfactuals.
- Unicorns don't exist.

The Solution

For $T_i = 0$ and $T_i = 1$, given both offered treatment ($Z_i = 1$):

Individual Treatment Effect for $i = Y_i(T_i = 1 | Z_i = 1) - Y_i(T_i = 0 | Z_i = 1)$

Think in terms of population averages.

- Per Rubin, there is an important population parameter to estimate.
- Hence why we (and he) referred to it as "effect of the treatment on the treated." (i.e. TOT)
- Also: the "average treatment effect" (i.e. ATE)

The Importance of Random Assignment

Random assignment (to treatment/control) helps us with ATE because it's tough to imagine cases where ($Z_i=1$ and $T_i=0$).

- Per random assignment: participants assigned to treatment/control must be same on average in the population ("equal in expectation").
- i.e. $E[Y_i(T_i=0|Z_i=1)]$ must be equal to $E[Y_i(T_i=0|Z_i=0)]$

By substitution:

$$TOT = E[Y_i(T_i = 1 | Z_i = 1)] - E[Y_i(T_i = 0 | Z_i = 0)]$$

When unbiased, a difference in sample means is sufficient:

$$T\hat{O}T = \frac{\sum_{i=1}^{n_1} Y_i}{n_1} - \frac{\sum_{i=1}^{n_0} Y_i}{n_0}$$

Some Other Important Assumptions

- Exogeneity (worth reiterating)
- Unit homogeneity
- Conditional independence
- SUTVA

Criteria for Evaluating Causal Arguments

- Falsifiability
- Internal consistency
- Careful selection of DV
- Concreteness
- "Encompassibility" (sic)

Table of Contents

Causality

Introduction Associational Inference Causal Inference