Logistic Regression

POST 8000 - Foundations of Social Science Research for Public Policy

Steven V. Miller

Department of Political Science

Goal for Today

Discuss logistic regression, perhaps the most common form of regression.

OLS has a ton of nice properties.

- Best linear unbiased estimator (BLUE)
- Simple to execute and interpret.

It'd be a *shame* if something were to happen to one of your assumptions.

The biggest problem you'll encounter will concern your DV.

• OLS assumes the DV is distributed normally.

You'll most often encounter DVs that are binary.

- Candidate won/lost.
- Citizen voted/did not vote.
- Program succeeded/failed.
- War happened/did not happen.

Most social/political phenomena are typically "there"/"not there."

Observe this simple data frame, fakeLogit from {stevedata}.

fakeLogit

##	# A	tibbl	le: 10,0	x 00	2
##		x	У		
##		<dbl></dbl>	<int></int>		
##	1	0	0		
##	2	0	0		
##	3	0	0		
##	4	0	0		
##	5	0	0		
##	6	0	0		
##	7	0	1		
##	8	0	0		
##	9	0	0		
##	10	0	0		
##	#.	wit	ch 9,990	more	rows

This simple fakeLogit data frame is simulated where:

- x is a five-item ordered categorical variable [0:4].
- y is a binary variable with only 0s and 1s.
- The effect of a one-unit increase of x on y is 1.4.
- y is estimated to be -2.8 when x is 0.

Importantly: responses are simulated from a binomial distribution.

• Seed is set for 100% reproducibility.

Here's what OLS produces.

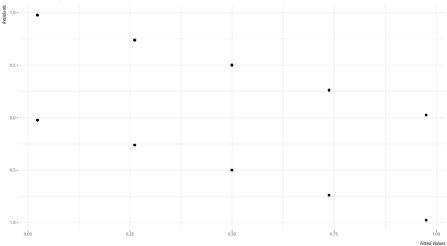
```
M1 <- lm(y ~ x, fakeLogit)
broom::tidy(M1) %>%
    mutate_if(is.numeric, ~round(., 2)) %>%
    kable(., "markdown")
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.02	0.01	3.62	0
х	0.24	0.00	91.02	0

Not even close.

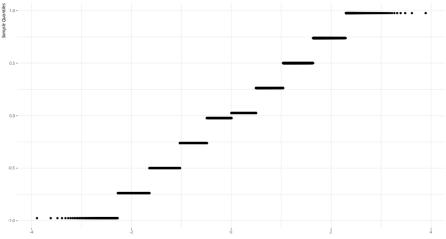
The Fitted-Residual Plot from the OLS Model We Just Ran

No fitted-residual plot from an OLS model should look like this.



The Q-Q Plot from the OLS Model We Just Ran

The Q-Q plot thinks you messed up too, pay careful attention to the middle of the plot as well.



Theoretical Quantiles

The Right Tool for the Right Job

```
M2 <- glm(y ~ x, fakeLogit, family=binomial(link = "logit"))
broom::tidy(M2) %>%
    mutate_if(is.numeric, ~round(., 2)) %>%
    kable(., "markdown")
```

term	estimate	std.error	statistic	p.value
(Intercept)	-2.82	0.06	-48.05	0
x	1.41	0.03	54.24	0

This was a logistic regression.

• The coefficient tells us the effect of a unit change in x on the *natural logged odds of y*.

Let's unpack this piece by piece.

You typically hear of **odds** in the world of sports betting.

• It's closely linked with probability.

Given some probability p of an event occurring, the odds of the event equal:

$$\mathsf{Odds} = \frac{p}{1-p}$$

Ever hear of something like "the odds are 4 to 1 against" an event occurring?

- Translation: for every five trials, we expect 1 occurrence to 4 non-occurrences, on average.
- Odds >1 = more "successes" than "failures."

Probability and Odds in Our Data

```
fakeLogit %>%
  group_by(x) %>%
  summarize(sum = sum(y),
    length = length(y),
    p = sum/length,
    # q is often substituted as notation for 1 - p
    q = 1 - p,
    odds = p/q) -> summaries
```

Probability and Odds in Our Data

х	sum	length	р	q	odds
0	110	2000	0.06	0.94	0.06
1	399	2000	0.20	0.80	0.25
2	989	2000	0.49	0.51	0.98
3	1609	2000	0.80	0.20	4.12
4	1885	2000	0.94	0.06	16.39

Tell me if you see a pattern beginning to emerge.

Odds Ratio and Percentage Change in Odds

One way of thinking about change in odds is the odds ratio.

• Simply: the odds of y in one category over the odds from the previous category.

A percentage change in odds is also a useful way of seeing a consistent pattern emerge.

• Simply: the difference in odds for a one-unit increase in x over odds of lower category.

Odds Ratio and Percentage Change in Odds

Percentage Change in Odds

х	sum	length	р	q	odds	oddsr	pcodds
0	110	2000	0.06	0.94	0.06	NA	NA
1	399	2000	0.20	0.80	0.25	4.28	328.20
2	989	2000	0.49	0.51	0.98	3.93	292.52
3	1609	2000	0.80	0.20	4.12	4.21	320.66
4	1885	2000	0.94	0.06	16.39	3.98	298.32

Another more sophisticated/flexible way: logits (i.e. natural logged odds).

• These are natural logarithmic transformations (of base *e*) of the odds.

Logit (Natural Logged Odds)

```
summaries %>%
mutate(logit = log(odds)) %>%
mutate_if(is.numeric, ~round(., 2)) %>%
kable(.,"markdown")
```

x	sum	length	р	q	odds	oddsr	pcodds	logit
0	110	2000	0.06	0.94	0.06	NA	NA	-2.84
1	399	2000	0.20	0.80	0.25	4.28	328.20	-1.39
2	989	2000	0.49	0.51	0.98	3.93	292.52	-0.02
3	1609	2000	0.80	0.20	4.12	4.21	320.66	1.41
4	1885	2000	0.94	0.06	16.39	3.98	298.32	2.80

Now do you see it?

Compare M2 with the Previous Table

term	estimate	std.error	statistic	p.value
(Intercept)	-2.82	0.06	-48.05	0
х	1.41	0.03	54.24	0

Properties of Logistic Regression

You can always "backtrack" a logistic regression coefficient.

• Exponentiating a logistic regression coefficient returns an odds ratio. Observe:

pull(exp(broom::tidy(M2)[2,2]))

[1] 4.0821

• You can subtract 1 from the exponentiated coefficient, and multiply it by 100.

pull(100*(exp(broom::tidy(M2)[2,2]) - 1))

[1] 308.21

That's the percentage change in odds.

Properties of Logistic Regression

If you internalize the relationship between probability and odds, you can even return a probability estimate from a logistic regression.

```
\mathsf{Probability} = \frac{\mathsf{Odds}}{1 + \mathsf{Odds}}
```

```
In R, for when x = 0, pr(y = 1 | x = 0):.
```

```
yintercept <- pull(broom::tidy(M2)[1,2])</pre>
```

```
exp(yintercept)/(1 + exp(yintercept))
```

```
## [1] 0.05629715
```

Properties of Logistic Regression

For larger/more complex models, resist the urge to do this by hand.

• But you could if you knew what you were doing.

For example, here's the probability of y = 1 for when x = 2:

```
yintercept <- pull(broom::tidy(M2)[1,2])
betax <- pull(broom::tidy(M2)[2,2])</pre>
```

```
exp(yintercept + 2*betax)/(1 + exp(yintercept + 2*betax))
```

[1] 0.4985139

Save this train of thought for when we get to the week on making the most of regression.

The logistic function is still monotonic, if not exactly linear.

• Interestingly, logistic function is close to linear when p is between .2 and .8.

Think of the logistic regression function as a natural logged odds of "success."

• Recall: dummies are a unique case of a categorical variable.

Statistical significance assessments are effectively identical to OLS.

• Caveat: inference is done via *z*-score and not a *t*-statistic.

tl;dr for why: OLS has both a mean and variance to estimate and the variance is independent of the mean.

- In logistic regression, there's really just one parameter p and not two.
- Basically, the variance with binary data is a function of the mean (i.e. p(1-p)).

Model Fit for Logistic Regression

Deviance is the estimate of model fit, not R^2 .

- Similar to a chi-square analysis.
- i.e. how well does the fitted value (\hat{y}) "fit" to the observed value of y.

Bigger the difference (or "deviance"), the poorer the fit of the model.

• This will allow you to do some model comparisons with multiple IVs.

MLE replaces the OLS principle.

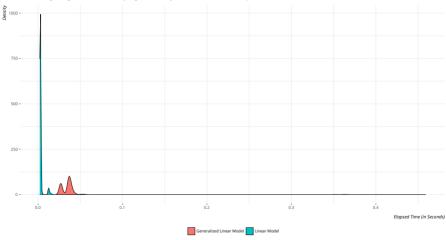
- OLS: draw a line that minimizes the sum of squared residuals.
- MLE: draw a line that results in the smallest possible deviance.

This is done iteratively.

• It's one reason why logistic regression models are slower than linear models.

The Distribution of Run Times for a Linear Regression and Logistic Regression (on the Same Data)

GLMs (like logistic regression) take discernibly longer to run, and you'll notice it more in more complicated models.



Data: see R Markdown file for underlying data.

Conclusion

If your DV is binary, use a logistic regression and not OLS.

- Statistical signifiance may not change, but that's also not the point.
- Binary DVs violate the assumptions of OLS and produce misleading estimates.
 - That's the point.

The process really doesn't change much.

- Inference is done via standard normal distribution, not Student's t-distribution.
- Coefficients communicate changes in the natural logged odds of y for a one-unit change in x.

This may take some time, but you'll get used to it. I promise.

Table of Contents

Logistic Regression

Introduction The Biggest Practical Obstacle to OLS Unpacking Logistic Regression Properties of Logistic Regression Output Model Fit for Logistic Regression Conclusion